
27 Anomaly Mediation Part II

27.1 The µ problem

Recall that in order to obtain a viable mass spectrum in the MSSM, we
needed µ and b terms

W = µHuHd (27.1)
V = bHuHd (27.2)

with

b ∼ µ2 (27.3)

In anomaly mediated models we need

µ ∼ α

4π
F

M
(27.4)

If we introduce a coupling to the SUSY breaking field

W = µ
Σ
M3

Pl

HuHd (27.5)

(27.6)

we get

b = 3
FΣ

MPl
µ ∼ 12π

α
µ2 (27.7)

A more complicated possibility is

L = α

∫
d4θ

X +X†

MPl
HuHd

ΣΣ†

M2
Pl

+ h.c. (27.8)

After rescaling

ΣHi

MPl
→ Hi . (27.9)

we have

Leff =
∫
d4θ

X +X†

MPl
HuHd

Σ†

Σ
+ h.c. (27.10)
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and

µ = α

(
F †

X

MPl
+

F †
Σ

MPl

)
(27.11)

b = α

(
FX

MPl

F †
Σ

MPl
− F †

X

MPl

FΣ

MPl

)
(27.12)

which vanishes if FΣ ∝ FX . At one loop a b term is generated. To canonically
normalize the Higgs fields we rescale:

H ′
i = Z

1/2
i

(
1− 1

2
γi
FΣ

MPl
θ2
)
|Σ=MPl

Hi . (27.13)

Then we find:

b = α
F †

X

2MPl

(
γu

FΣ

MPl
+ γd

FΣ

MPl

)
= O(µ2) (27.14)

We can generate the required interaction with a 5D toy model, where the
fifth dimension has radius rc. Recall that for r < rc the gravitational po-
tential is

1
r2M3

5

(27.15)

rather than

1
rM2

Pl

. (27.16)

Matching at r = rc we have

M2
Pl = rcM

3
5 (27.17)

We introduce a massive vector field V which propagates in the 5D bulk
(recall that it has canonical dimension 3/2). Integrating over the fifth di-
mension we assume the 4D effective action has the form:

L =
∫
d4θ

(
rcm

2V 2 + aV (x+X†)M3/2
5 +

bV

M
3/2
5

HuHd

)
ΣΣ†

M2
Pl

+ h.c.(27.18)
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Integrating out V gives

Leff =
∫
d4θ

ab

rcm2
(X +X†)HuHd

ΣΣ†

M2
Pl

+ h.c. (27.19)

with

rcM ∼ O(1)
m ∼ O(MPl)
ab ∼ O(α) (27.20)

we arrive at the required interaction.

27.2 Slepton masses

Recall that the quark and slepton masses had the form:

M2
q =

1
2

[
C2(r)
4π2

bg4 + aλ2(eλ2 − fg2)
] |FΣ|2

M2
Pl

. (27.21)

and b is negative for SU(2)L and U(1)Y , so the sleptons are tachyonic. There
are several ways to fix this problem:

• introduce new Higgs fields with large Yukawa couplings

• introduce new asymptotically free gauge interactions for sleptons, this
requires that the leptons and sleptons are composite

• introduce new bulk fields which couple leptons and the DSB fields on
the other brane

• introduce a heavy threshold (like messengers) with a light singlet.

We will only consider the last possibility, which is also the simplest. This
scenario is known as “Anti-Gauge Mediation”.

We consider a model with a singlet X and N messengers ψ and ψ in ’s
and ’s of SU(5) with a superpotential

W = λXψψ (27.22)

X is pseudo-flat, it gets a mass through anomaly mediation

V (X) = m2
X(X)|X|2

=
N

16π2
λ2(X)

[
Aλ2(X)− Cg2(X)

] |FΣ|2

M2
Pl

|X|2 . (27.23)
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If the messengers have some asymptotically free gauge interactions (embed-
ded in SU(N)) then it is possible to arrange the parameters so the m2

X(X)
changes sign, and X is stabilized nearby (this is the Coleman-Weinberg
mechanism again). Take

〈X〉 = M (27.24)

then

FX

〈X〉
∼ λ

16π2

FΣ

MPl
(27.25)

The couplings of the low energy theory depend on

X̃ = X
MPl

Σ
(27.26)

so for M �MPl

F
X̃

〈X̃〉
=
FX

M
− FΣ

MPl
≈ − FΣ

MPl
(27.27)

So Taylor expanding the coefficient of WαWα in superspace we find a gaug-
ino mass:

Mλ = − 1
2τ

∂τ

∂ lnΣ
|Σ=MPl

FΣ

MPl

=
1
2τ

(
∂τ

∂ lnµ
+

∂τ

∂ lnX

)
FΣ

MPl

=
α(µ)
4π

(b−N)
FΣ

MPl
(27.28)

We can also Taylor expand the matter wavefunction renormalizations in
superspace to find a squark or slepton mass squared:

M2
q = −

(
∂

∂ lnµ
+

∂

∂ ln |X|

)2

lnZ(µ, |X|) |FΣ|2

4M2
Pl

(27.29)

=
2C2(r)b
(4π)2

[
α2(µ)− α2(µ)

N

b
+ (α2(µ)− α2(M))

(
N2

b2
− N

b

)]
|FΣ|2

M2
Pl

The first term in the gaugino mass and squark/slepton mass squared formu-
las is just the anomaly mediation term, the second term is the gauge media-
tion term but with the opposite sign. This is the reason the these models are
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called anti-gauge mediation models. The final term in the squark/slepton
mass squared formula is just the RG running with the gaugino mass, which
we have seen many times. For large enough N this term can dominate for
the sleptons. We cannot take M too large or our approximations break
down and higher dimension operators can start to dominate. For example∫

d4θ
X†X

M2
Pl

Q†eVQ (27.30)

would give a mass squared

M2
q = −|FX |2

M2
Pl

(27.31)

For M close to MGUT we need N ≥ 4.
With the addition of another singlet field S this model can also generate

µ and b terms. Take the superpotential to be∫
d2θλSHuHd +

k

3
S3 +

y

2
S2X (27.32)

At one loop a kinetic mixing develops:∫
d4θZ̃SX† + h.c. (27.33)

For 〈X〉 6= 0, S is massive an can be integrated out:

S ∼ −λ
y

HuHd

X
(27.34)

This generates the interaction

Leff =
∫
d4θ

X†

X
HuHdZ̃

( |X|MPl

Λ|Σ|

)
+ h.c. (27.35)

generates a µ term at one loop:

µ =
1
2

∂Z̃

∂ ln |X|
(27.36)

and a b term at two loops:

b =
1
4

∂2Z̃

∂(ln |X|)2
(27.37)
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27.3 Gaugino Mediation

Since RG generates positive mass squared for all the scalars it is possible
to consider models where to leading order only the gaugino gets a mass. A
simple way to set this up to to have a compact dimension with a radius
around

rc ∼
1

MGUT
(27.38)

and let the gauge fields of the MSSM propagate in this extra dimension,
with the source of SUSY breaking being another brane at the other end of
the fifth dimension. The 4D gauge coupling is related to the 5D coupling by

g2
4 =

g2
5

rc
(27.39)

Since there is no chirality in 5D, the minimal SUSY theory has N = 2. The
5D N = 2 gauge supermultiplet breaks into a 4D gauge supermultiplet and
and adjoint chiral multiplet:

(AN , λL, λR, φ) → (Aν , λL) + (φ+ iA5, λR) (27.40)

The compactification can be chosen so that the chiral multiplet vanishes on
our brane. SUSY breaking on the other brane can be communicated to the
gauge fields by

L ∝
∫
dx5

∫
d2θ

(
1 + δ(x5 − rc)

X

M2

)
WαWα + h.c.

∝ rcλ
†σµDµλ+

FX

M2
λ†λ+ . . . (27.41)

so

Mλ =
1

rcM

FX

M
(27.42)

Bulk gluino exchange gives a squark mass:

M2
Q ∼ g2

5

16π2

(
FX

M2

)2 1
r3c

=
g2
4

16π2
M2

λ (27.43)

which is suppressed relative to the gluino mass squares, so for rc �M−1
weak,

the 4D RG running dominates.
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